Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Sci Rep ; 14(1): 3944, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38365940

ABSTRACT

Deep learning has proven to be highly effective in diagnosing COVID-19; however, its efficacy is contingent upon the availability of extensive data for model training. The data sharing among hospitals, which is crucial for training robust models, is often restricted by privacy regulations. Federated learning (FL) emerges as a solution by enabling model training across multiple hospitals while preserving data privacy. However, the deployment of FL can be resource-intensive, necessitating efficient utilization of computational and network resources. In this study, we evaluate the performance and resource efficiency of five FL algorithms in the context of COVID-19 detection using Convolutional Neural Networks (CNNs) in a decentralized setting. The evaluation involves varying the number of participating entities, the number of federated rounds, and the selection algorithms. Our findings indicate that the Cyclic Weight Transfer algorithm exhibits superior performance, particularly when the number of participating hospitals is limited. These insights hold practical implications for the deployment of FL algorithms in COVID-19 detection and broader medical image analysis.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Algorithms , Hospitals , Neural Networks, Computer , Privacy
2.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38228979

ABSTRACT

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

3.
Comput Methods Programs Biomed ; 244: 107939, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008678

ABSTRACT

BACKGROUND AND OBJECTIVE: Recently, deep learning (DL) algorithms showed to be promising in predicting outcomes such as distant metastasis-free survival (DMFS) and overall survival (OS) using pre-treatment imaging in head and neck cancer. Gross Tumor Volume of the primary tumor (GTVp) segmentation is used as an additional channel in the input to DL algorithms to improve model performance. However, the binary segmentation mask of the GTVp directs the focus of the network to the defined tumor region only and uniformly. DL models trained for tumor segmentation have also been used to generate predicted tumor probability maps (TPM) where each pixel value corresponds to the degree of certainty of that pixel to be classified as tumor. The aim of this study was to explore the effect of using TPM as an extra input channel of CT- and PET-based DL prediction models for oropharyngeal cancer (OPC) patients in terms of local control (LC), regional control (RC), DMFS and OS. METHODS: We included 399 OPC patients from our institute that were treated with definitive (chemo)radiation. For each patient, CT and PET scans and GTVp contours, used for radiotherapy treatment planning, were collected. We first trained a previously developed 2.5D DL framework for tumor probability prediction by 5-fold cross validation using 131 patients. Then, a 3D ResNet18 was trained for outcome prediction using the 3D TPM as one of the possible inputs. The endpoints were LC, RC, DMFS, and OS. We performed 3-fold cross validation on 168 patients for each endpoint using different combinations of image modalities as input. The final prediction in the test set (100) was obtained by averaging the predictions of the 3-fold models. The C-index was used to evaluate the discriminative performance of the models. RESULTS: The models trained replacing the GTVp contours with the TPM achieved the highest C-indexes for LC (0.74) and RC (0.60) prediction. For OS, using the TPM or the GTVp as additional image modality resulted in comparable C-indexes (0.72 and 0.74). CONCLUSIONS: Adding predicted TPMs instead of GTVp contours as an additional input channel for DL-based outcome prediction models improved model performance for LC and RC.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Humans , Positron Emission Tomography Computed Tomography/methods , Oropharyngeal Neoplasms/diagnostic imaging , Prognosis
4.
Radiother Oncol ; 190: 110019, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000689

ABSTRACT

BACKGROUND AND PURPOSE: Concurrent chemo-radiotherapy (CCRT) followed by adjuvant durvalumab is standard-of-care for fit patients with unresectable stage III NSCLC. Intensity modulated proton therapy (IMPT) results in different doses to organs than intensity modulated photon therapy (IMRT). We investigated whether IMPT compared to IMRT reduce hematological toxicity and whether it affects durvalumab treatment. MATERIALS AND METHODS: Prospectively collected series of consecutive patients with stage III NSCLC receiving CCRT between 06.16 and 12.22 (staged with FDG-PET-CT and brain imaging) were retrospectively analyzed. The primary endpoint was the incidence of lymphopenia grade ≥ 3 in IMPT vs IMRT treated patients. RESULTS: 271 patients were enrolled (IMPT: n = 71, IMRT: n = 200) in four centers. All patients received platinum-based chemotherapy. Median age: 66 years, 58 % were male, 36 % had squamous NSCLC. The incidence of lymphopenia grade ≥ 3 during CCRT was 67 % and 47 % in the IMRT and IMPT group, respectively (OR 2.2, 95 % CI: 1.0-4.9, P = 0.03). The incidence of anemia grade ≥ 3 during CCRT was 26 % and 9 % in the IMRT and IMPT group respectively (OR = 4.9, 95 % CI: 1.9-12.6, P = 0.001). IMPT was associated with a lower rate of Performance Status (PS) ≥ 2 at day 21 and 42 after CCRT (13 % vs. 26 %, P = 0.04, and 24 % vs. 39 %, P = 0.02). Patients treated with IMPT had a higher probability of receiving adjuvant durvalumab (74 % vs. 52 %, OR 0.35, 95 % CI: 0.16-0.79, P = 0.01). CONCLUSION: IMPT was associated with a lower incidence of severe lymphopenia and anemia, better PS after CCRT and a higher probability of receiving adjuvant durvalumab.


Subject(s)
Anemia , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphopenia , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Male , Aged , Female , Protons , Positron Emission Tomography Computed Tomography , Retrospective Studies , Carcinoma, Non-Small-Cell Lung/therapy , Proton Therapy/adverse effects , Proton Therapy/methods , Lung Neoplasms/therapy , Lung Neoplasms/etiology , Lymphopenia/etiology , Anemia/etiology , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
5.
Phys Imaging Radiat Oncol ; 28: 100502, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38026084

ABSTRACT

Background and purpose: To compare the prediction performance of image features of computed tomography (CT) images extracted by radiomics, self-supervised learning and end-to-end deep learning for local control (LC), regional control (RC), locoregional control (LRC), distant metastasis-free survival (DMFS), tumor-specific survival (TSS), overall survival (OS) and disease-free survival (DFS) of oropharyngeal squamous cell carcinoma (OPSCC) patients after (chemo)radiotherapy. Methods and materials: The OPC-Radiomics dataset was used for model development and independent internal testing and the UMCG-OPC set for external testing. Image features were extracted from the Gross Tumor Volume contours of the primary tumor (GTVt) regions in CT scans when using radiomics or a self-supervised learning-based method (autoencoder). Clinical and combined (radiomics, autoencoder or end-to-end) models were built using multivariable Cox proportional-hazard analysis with clinical features only and both clinical and image features for LC, RC, LRC, DMFS, TSS, OS and DFS prediction, respectively. Results: In the internal test set, combined autoencoder models performed better than clinical models and combined radiomics models for LC, RC, LRC, DMFS, TSS and DFS prediction (largest improvements in C-index: 0.91 vs. 0.76 in RC and 0.74 vs. 0.60 in DMFS). In the external test set, combined radiomics models performed better than clinical and combined autoencoder models for all endpoints (largest improvements in LC, 0.82 vs. 0.71). Furthermore, combined models performed better in risk stratification than clinical models and showed good calibration for most endpoints. Conclusions: Image features extracted using self-supervised learning showed best internal prediction performance while radiomics features have better external generalizability.

6.
Med Phys ; 50(10): 6190-6200, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37219816

ABSTRACT

BACKGROUND: Personalized treatment is increasingly required for oropharyngeal squamous cell carcinoma (OPSCC) patients due to emerging new cancer subtypes and treatment options. Outcome prediction model can help identify low or high-risk patients who may be suitable to receive de-escalation or intensified treatment approaches. PURPOSE: To develop a deep learning (DL)-based model for predicting multiple and associated efficacy endpoints in OPSCC patients based on computed tomography (CT). METHODS: Two patient cohorts were used in this study: a development cohort consisting of 524 OPSCC patients (70% for training and 30% for independent testing) and an external test cohort of 396 patients. Pre-treatment CT-scans with the gross primary tumor volume contours (GTVt) and clinical parameters were available to predict endpoints, including 2-year local control (LC), regional control (RC), locoregional control (LRC), distant metastasis-free survival (DMFS), disease-specific survival (DSS), overall survival (OS), and disease-free survival (DFS). We proposed DL outcome prediction models with the multi-label learning (MLL) strategy that integrates the associations of different endpoints based on clinical factors and CT-scans. RESULTS: The multi-label learning models outperformed the models that were developed based on a single endpoint for all endpoints especially with high AUCs ≥ 0.80 for 2-year RC, DMFS, DSS, OS, and DFS in the internal independent test set and for all endpoints except 2-year LRC in the external test set. Furthermore, with the models developed, patients could be stratified into high and low-risk groups that were significantly different for all endpoints in the internal test set and for all endpoints except DMFS in the external test set. CONCLUSION: MLL models demonstrated better discriminative ability for all 2-year efficacy endpoints than single outcome models in the internal test and for all endpoints except LRC in the external set.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/therapy , Tomography, X-Ray Computed , Disease-Free Survival , Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/therapy , Retrospective Studies
7.
Phys Med Biol ; 68(5)2023 02 23.
Article in English | MEDLINE | ID: mdl-36749988

ABSTRACT

Objective. Tumor segmentation is a fundamental step for radiotherapy treatment planning. To define an accurate segmentation of the primary tumor (GTVp) of oropharyngeal cancer patients (OPC) each image volume is explored slice-by-slice from different orientations on different image modalities. However, the manual fixed boundary of segmentation neglects the spatial uncertainty known to occur in tumor delineation. This study proposes a novel deep learning-based method that generates probability maps which capture the model uncertainty in the segmentation task.Approach. We included 138 OPC patients treated with (chemo)radiation in our institute. Sequences of 3 consecutive 2D slices of concatenated FDG-PET/CT images and GTVp contours were used as input. Our framework exploits inter and intra-slice context using attention mechanisms and bi-directional long short term memory (Bi-LSTM). Each slice resulted in three predictions that were averaged. A 3-fold cross validation was performed on sequences extracted from the axial, sagittal, and coronal plane. 3D volumes were reconstructed and single- and multi-view ensembling were performed to obtain final results. The output is a tumor probability map determined by averaging multiple predictions.Main Results. Model performance was assessed on 25 patients at different probability thresholds. Predictions were the closest to the GTVp at a threshold of 0.9 (mean surface DSC of 0.81, median HD95of 3.906 mm).Significance. The promising results of the proposed method show that is it possible to offer the probability maps to radiation oncologists to guide them in a in a slice-by-slice adaptive GTVp segmentation.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Humans , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed/methods , Probability , Image Processing, Computer-Assisted/methods
8.
Radiother Oncol ; 180: 109483, 2023 03.
Article in English | MEDLINE | ID: mdl-36690302

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to develop and evaluate a prediction model for 2-year overall survival (OS) in stage I-IIIA non-small cell lung cancer (NSCLC) patients who received definitive radiotherapy by considering clinical variables and image features from pre-treatment CT-scans. MATERIALS AND METHODS: NSCLC patients who received stereotactic radiotherapy were prospectively collected at the UMCG and split into a training and a hold out test set including 189 and 81 patients, respectively. External validation was performed on 228 NSCLC patients who were treated with radiation or concurrent chemoradiation at the Maastro clinic (Lung1 dataset). A hybrid model that integrated both image and clinical features was implemented using deep learning. Image features were learned from cubic patches containing lung tumours extracted from pre-treatment CT scans. Relevant clinical variables were selected by univariable and multivariable analyses. RESULTS: Multivariable analysis showed that age and clinical stage were significant prognostic clinical factors for 2-year OS. Using these two clinical variables in combination with image features from pre-treatment CT scans, the hybrid model achieved a median AUC of 0.76 [95 % CI: 0.65-0.86] and 0.64 [95 % CI: 0.58-0.70] on the complete UMCG and Maastro test sets, respectively. The Kaplan-Meier survival curves showed significant separation between low and high mortality risk groups on these two test sets (log-rank test: p-value < 0.001, p-value = 0.012, respectively) CONCLUSION: We demonstrated that a hybrid model could achieve reasonable performance by utilizing both clinical and image features for 2-year OS prediction. Such a model has the potential to identify patients with high mortality risk and guide clinical decision making.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Neoplasm Staging , Tomography, X-Ray Computed/methods , Retrospective Studies
9.
Eur J Cancer ; 178: 150-161, 2023 01.
Article in English | MEDLINE | ID: mdl-36442460

ABSTRACT

BACKGROUND: Personalised radiotherapy can improve treatment outcomes of patients with head and neck cancer (HNC), where currently a 'one-dose-fits-all' approach is the standard. The aim was to establish individualised outcome prediction based on multi-institutional international 'big-data' to facilitate risk-based stratification of patients with HNC. METHODS: The data of 4611 HNC radiotherapy patients from three academic cancer centres were split into four cohorts: a training (n = 2241), independent test (n = 786), and external validation cohorts 1 (n = 1087) and 2 (n = 497). Tumour- and patient-related clinical variables were considered in a machine learning pipeline to predict overall survival (primary end-point) and local and regional tumour control (secondary end-points); serially, imaging features were considered for optional model improvement. Finally, patients were stratified into high-, intermediate-, and low-risk groups. RESULTS: Performance score, AJCC8thstage, pack-years, and Age were identified as predictors for overall survival, demonstrating good performance in both the training cohort (c-index = 0.72 [95% CI, 0.66-0.77]) and in all three validation cohorts (c-indices: 0.76 [0.69-0.83], 0.73 [0.68-0.77], and 0.75 [0.68-0.80]). Excellent stratification of patients with HNC into high, intermediate, and low mortality risk was achieved; with 5-year overall survival rates of 17-46% for the high-risk group compared to 92-98% for the low-risk group. The addition of morphological image feature further improved the performance (c-index = 0.73 [0.64-0.81]). These models are integrated in a clinic-ready interactive web interface: https://uic-evl.github.io/hnc-predictor/ CONCLUSIONS: Robust model-based prediction was able to stratify patients with HNC in distinct high, intermediate, and low mortality risk groups. This can effectively be capitalised for personalised radiotherapy, e.g., for tumour radiation dose escalation/de-escalation.


Subject(s)
Head and Neck Neoplasms , Humans , Head and Neck Neoplasms/radiotherapy , Prognosis , Risk Assessment/methods , Risk Factors , Treatment Outcome
10.
Radiat Oncol ; 17(1): 205, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510254

ABSTRACT

OBJECTIVES: The goal of this study is to validate different CBCT correction methods to select the superior method that can be used for dose evaluation in breast cancer patients with large anatomical changes treated with photon irradiation. MATERIALS AND METHOD: Seventy-six breast cancer patients treated with a partial VMAT photon technique (70% conformal, 30% VMAT) were included in this study. All patients showed at least a 5 mm variation (swelling or shrinkage) of the breast on the CBCT compared to the planning-CT (pCT) and had a repeat-CT (rCT) for dose evaluation acquired within 3 days of this CBCT. The original CBCT was corrected using four methods: (1) HU-override correction (CBCTHU), (2) analytical correction and conversion (CBCTCC), (3) deep learning (DL) correction (CTDL) and (4) virtual correction (CTV). Image quality evaluation consisted of calculating the mean absolute error (MAE) and mean error (ME) within the whole breast clinical target volume (CTV) and the field of view of the CBCT minus 2 cm (CBCT-ROI) with respect to the rCT. The dose was calculated on all image sets using the clinical treatment plan for dose and gamma passing rate analysis. RESULTS: The MAE of the CBCT-ROI was below 66 HU for all corrected CBCTs, except for the CBCTHU with a MAE of 142 HU. No significant dose differences were observed in the CTV regions in the CBCTCC, CTDL and CTv. Only the CBCTHU deviated significantly (p < 0.01) resulting in 1.7% (± 1.1%) average dose deviation. Gamma passing rates were > 95% for 2%/2 mm for all corrected CBCTs. CONCLUSION: The analytical correction and conversion, deep learning correction and virtual correction methods can be applied for an accurate CBCT correction that can be used for dose evaluation during the course of photon radiotherapy of breast cancer patients.


Subject(s)
Breast Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Female , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Risk Assessment , Image Processing, Computer-Assisted/methods
11.
Int J Radiat Oncol Biol Phys ; 112(2): 463-474, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34530091

ABSTRACT

PURPOSE: In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. METHODS AND MATERIALS: For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). RESULTS: The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (≥94% of the dose in 98% of the volume [D98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D98%: IMPT 94% ± 5%, VMAT 96% ± 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. CONCLUSIONS: PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging.


Subject(s)
Esophageal Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Diaphragm/diagnostic imaging , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Humans , Organs at Risk/diagnostic imaging , Proton Therapy/methods , Protons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
12.
Radiother Oncol ; 164: 167-174, 2021 11.
Article in English | MEDLINE | ID: mdl-34597740

ABSTRACT

BACKGROUND AND PURPOSE: Accurate segmentation of organs-at-risk (OARs) is crucial but tedious and time-consuming in adaptive radiotherapy (ART). The purpose of this work was to automate head and neck OAR-segmentation on repeat CT (rCT) by an optimal combination of human and auto-segmentation for accurate prediction of Normal Tissue Complication Probability (NTCP). MATERIALS AND METHODS: Human segmentation (HS) of 3 observers, deformable image registration (DIR) based contour propagation and deep learning contouring (DLC) were carried out to segment 15 OARs on 15 rCTs. The original treatment plan was re-calculated on rCT to obtain mean dose (Dmean) and consequent NTCP-predictions. The average Dmean and NTCP-predictions of the three observers were referred to as the gold standard to calculate the absolute difference of Dmean and NTCP-predictions (|ΔDmean| and |ΔNTCP|). RESULTS: The average |ΔDmean| of parotid glands in HS was 1.40 Gy, lower than that obtained with DIR and DLC (3.64 Gy, p < 0.001 and 3.72 Gy, p < 0.001, respectively). DLC showed the highest |ΔDmean| in middle Pharyngeal Constrictor Muscle (PCM) (5.13 Gy, p = 0.01). DIR showed second highest |ΔDmean| in the cricopharyngeal inlet (2.85 Gy, p = 0.01). The semi auto-segmentation (SAS) adopted HS, DIR and DLC for segmentation of parotid glands, PCM and all other OARs, respectively. The 90th percentile |ΔNTCP|was 2.19%, 2.24%, 1.10% and 1.50% for DIR, DLC, HS and SAS respectively. CONCLUSIONS: Human segmentation of the parotid glands remains necessary for accurate interpretation of mean dose and NTCP during ART. Proposed semi auto-segmentation allows NTCP-predictions within 1.5% accuracy for 90% of the cases.


Subject(s)
Head and Neck Neoplasms , Radiotherapy Planning, Computer-Assisted , Head , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Organs at Risk , Probability , Radiotherapy Dosage
13.
Radiother Oncol ; 163: 46-54, 2021 10.
Article in English | MEDLINE | ID: mdl-34343547

ABSTRACT

BACKGROUND AND PURPOSE: Developing NTCP-models for cardiac complications after breast cancer (BC) radiotherapy requires cardiac dose-volume parameters for many patients. These can be obtained by using multi-atlas based automatic segmentation (MABAS) of cardiac structures in planning CT scans. We investigated the relevance of separate multi-atlases for deep inspiration breath hold (DIBH) and free breathing (FB) CT scans. MATERIALS AND METHODS: BC patients scanned in DIBH (n = 10) and in FB (n = 20) were selected to create separate multi-atlases consisting of expert panel delineations of the whole heart, atria and ventricles. The accuracy of atlas-generated contours was validated with expert delineations in independent datasets (n = 10 for DIBH and FB) and reported as Dice coefficients, contour distances and dose-volume differences in relation to interobserver variability of manual contours. Dependency of MABAS contouring accuracy on breathing technique was assessed by validation of a FB atlas in DIBH patients and vice versa (cross-validation). RESULTS: For all structures the FB and DIBH atlases resulted in Dice coefficients with their respective reference contours ≥ 0.8 and average contour distances ≤ 2 mm smaller than slice thickness of (CTs). No significant differences were found for dose-volume parameters in volumes receiving relevant dose levels (WH, LV and RV). Accuracy of the DIBH atlas was at least similar to, and for the ventricles better than, the interobserver variation in manual delineation. Cross-validation between breathing techniques showed a reduced MABAS performance. CONCLUSION: Multi-atlas accuracy was at least similar to interobserver delineation variation. Separate atlases for scans made in DIBH and FB could benefit atlas performance because accuracy depends on breathing technique.


Subject(s)
Breast Neoplasms , Breath Holding , Female , Heart/diagnostic imaging , Heart Ventricles , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Respiration , Tomography, X-Ray Computed
14.
Med Phys ; 48(10): 5674-5683, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289123

ABSTRACT

PURPOSE: To ensure target coverage in the treatment of esophageal cancer, a density override to the region of diaphragm motion can be applied in the optimization process. Here, we evaluate the benefit of this approach during robust optimization for intensity modulated proton therapy (IMPT) planning. MATERIALS AND METHODS: For 10 esophageal cancer patients, two robustly optimized IMPT plans were created either using (WDO) or not using (NDO) a diaphragm density override of 1.05 g/cm3 during plan optimization. The override was applied to the excursion of the diaphragm between exhale and inhale. Initial robustness evaluation was performed for plan acceptance (setup errors of 8 mm, range errors of ±3%), and subsequently, on all weekly repeated 4DCTs (setup errors of 2 mm, range errors of ±3%). Target coverage and hotspots were analyzed on the resulting voxel-wise minimum (Vwmin ) and voxel-wise maximum (Vwmax ) dose distributions. RESULTS: The nominal dose distributions were similar for both WDO and NDO plans. However, visual inspection of the Vwmax of the WDO plans showed hotspots behind the right diaphragm override region. For one patient, target coverage and hotspots improved by applying the diaphragm override. We found no differences in target coverage in the weekly evaluations between the two approaches. CONCLUSION: The diaphragm override approach did not result in a clinical benefit in terms of planning and interfractional robustness. Therefore, we do not see added value in employing this approach as a default option during robust optimization for IMPT planning in esophageal cancer.


Subject(s)
Esophageal Neoplasms , Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Diaphragm/diagnostic imaging , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
15.
Int J Radiat Oncol Biol Phys ; 110(5): 1350-1359, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33713741

ABSTRACT

PURPOSE: Radiation-induced acute coronary events (ACEs) may occur as a treatment-related late adverse effect of breast cancer (BC) radiation. However, the underlying mechanisms behind this radiation-induced cardiac disease remain to be determined. The objective of this study was to test the hypothesis that radiation dose to calcified atherosclerotic plaques in the left anterior descending coronary artery (LAD) is a better predictor for ACEs than radiation dose to the whole heart or left ventricle in patients with BC treated with radiation therapy. METHODS AND MATERIALS: The study cohort consisted of 910 patients with BC treated with postoperative radiation therapy after breast-conserving surgery. In total, 163 patients had an atherosclerotic plaque in the LAD. The endpoint was the occurrence of an ACE after treatment. For each individual patient, the mean heart dose, volume of the left ventricle receiving ≥5 Gy (LV-V5), mean LAD dose, and mean dose to calcified atherosclerotic plaques in the LAD, if present, were acquired based on planning computed tomography scans. Cox regression analysis was used to analyze the effects on the cumulative incidence of ACEs. RESULTS: The median follow-up time was 9.2 years (range, 0.1-14.3 years). In total, 38 patients (4.2%) developed an ACE during follow-up. For patients with an atherosclerotic plaque (n = 163), the mean dose to the atherosclerotic plaque was the strongest predictor for ACEs, even after correction for cardiovascular risk factors (hazard ratio [HR], 1.269; 95% CI, 1.090-1.477; P = .002). The LV-V5 was associated with ACEs in patients without atherosclerotic plaques in the LAD (n = 680) (HR, 1.021; 95% CI, 1.003-1.039; P = .023). CONCLUSIONS: The results of this study suggest that radiation dose to pre-existing calcified atherosclerotic plaques in the LAD is strongly associated with the development of ACEs in patients with BC.


Subject(s)
Breast Neoplasms/radiotherapy , Coronary Disease/etiology , Coronary Vessels/radiation effects , Plaque, Atherosclerotic/radiotherapy , Adenocarcinoma/radiotherapy , Adenocarcinoma/surgery , Adult , Aged , Aged, 80 and over , Breast Carcinoma In Situ/radiotherapy , Breast Carcinoma In Situ/surgery , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Cardiotoxicity/epidemiology , Cardiotoxicity/etiology , Cohort Studies , Coronary Disease/epidemiology , Coronary Vessels/diagnostic imaging , Dose-Response Relationship, Radiation , Female , Follow-Up Studies , Heart/diagnostic imaging , Heart/radiation effects , Heart Ventricles/diagnostic imaging , Heart Ventricles/radiation effects , Humans , Kaplan-Meier Estimate , Mastectomy, Segmental , Middle Aged , Plaque, Atherosclerotic/diagnostic imaging , Radiation Dosage , Radiotherapy, Conformal , Regression Analysis , Time Factors , Tomography, X-Ray Computed , Vascular Calcification/diagnostic imaging , Vascular Calcification/radiotherapy
16.
Radiother Oncol ; 157: 210-218, 2021 04.
Article in English | MEDLINE | ID: mdl-33545257

ABSTRACT

PURPOSE: Compared to volumetric modulated arc therapy (VMAT), clinical benefits are anticipated when treating thoracic tumours with intensity-modulated proton therapy (IMPT). However, the current concern of plan robustness as a result of motion hampers its wide clinical implementation. To define an optimal protocol to treat lung and oesophageal cancers, we present a comprehensive evaluation of IMPT planning strategies, based on patient 4DCTs and machine log files. MATERIALS AND METHODS: For ten lung and ten oesophageal cancer patients, a planning 4DCT and weekly repeated 4DCTs were collected. For these twenty patients, the CTV volume and motion were assessed based on the 4DCTs. In addition to clinical VMAT plans, layered rescanned 3D and 4D robust optimised IMPT plans (IMPT_3D and IMPT_4D respectively) were generated, and approved clinically, for all patients. The IMPT plans were then delivered in dry runs at our proton facility to obtain log files, and subsequently evaluated through our 4D robustness evaluation method (4DREM). With this method, for each evaluated plan, fourteen 4D accumulated scenario doses were obtained, representing 14 possible fractionated treatment courses. RESULTS: From VMAT to IMPT_3D, nominal Dmean(lungs-GTV) decreased 2.75 ± 0.56 GyRBE and 3.76 ± 0.92 GyRBE over all lung and oesophageal cancer patients, respectively. A more pronounced reduction was verified for Dmean(heart): 5.38 ± 7.36 GyRBE (lung cases) and 9.51 ± 2.25 GyRBE (oesophagus cases). Target coverage robustness of IMPT_3D was sufficient for 18/20 patients. Averaged dose in critical structures over all 4DREM scenarios changed only slightly for both IMPT_3D and IMPT_4D. Relative to IMPT_3D, no gain in IMPT_4D was observed. CONCLUSION: The dosimetric superiority of IMPT over VMAT has been established. For most thoracic tumours, our IMPT_3D planning protocol showed to be robust and clinically suitable. Nevertheless, accurate patient positioning and adapting to anatomical variations over the course of treatment remain compulsory.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Lung Neoplasms/radiotherapy , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
17.
Radiother Oncol ; 154: 194-200, 2021 01.
Article in English | MEDLINE | ID: mdl-32956707

ABSTRACT

PURPOSE: Large-field photon radiotherapy is current standard in the treatment of cervical cancer patients. However, with the increasing availability of Pencil Beam Scanning Proton Therapy (PBS-PT) and robust treatment planning techniques, protons may have significant advantages for cervical cancer patients in the reduction of toxicity. In this study, PBS-PT and photon Volumetric Modulated Arc Therapy (VMAT) were compared, examining target coverage and organ at risk (OAR) dose, taking inter- and intra-fraction motion into account. MATERIALS AND METHODS: Twelve cervical cancer patients were included in this in-silico planning study. In all cases, a planning CT scan, five weekly repeat CT scans (reCTs) and an additional reCT 10 min after the first reCT were available. Two-arc VMAT and robustly optimised two- and four-field (2F and 4F) PBS-PT plans were robustly evaluated on planCTs and reCTs using set-up and range uncertainty. Nominal OAR doses and voxel-wise minimum target coverage robustness were compared. RESULTS: Average voxel-wise minimum accumulated doses for pelvic target structures over all patients were adequate for both photon and proton treatment techniques (D98 > 95%, [91.7-99.3%]). Average accumulated dose of the para-aortic region was lower than the required 95%, D98 > 94.4% [91.1-98.2%]. With PBS-PT 4F, dose to all OARs was significantly lower than with VMAT. Major differences were observed for mean bowel bag V15Gy: 60% [39-70%] for VMAT vs 30% [10-52%] and 32% [9-54%] for PBS-PT 2F and 4F and for mean bone marrow V10Gy: 88% [82-97%] for VMAT vs 66% [60-73%] and 67% [60-75%] for PBS-PT 2F and 4F. CONCLUSION: Robustly optimised PBS-PT for cervical cancer patients shows equivalent target robustness against inter- and intra-fraction variability compared to VMAT, and offers significantly better OAR sparing.


Subject(s)
Proton Therapy , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uterine Cervical Neoplasms/radiotherapy
18.
Radiother Oncol ; 154: 45-52, 2021 01.
Article in English | MEDLINE | ID: mdl-32898561

ABSTRACT

OBJECTIVE: To establish optimal robust optimization uncertainty settings for clinical head and neck cancer (HNC) patients undergoing 3D image-guided pencil beam scanning (PBS) proton therapy. METHODS: We analyzed ten consecutive HNC patients treated with 70 and 54.25 GyRBE to the primary and prophylactic clinical target volumes (CTV) respectively using intensity-modulated proton therapy (IMPT). Clinical plans were generated using robust optimization with 5 mm/3% setup/range uncertainties (RayStation v6.1). Additional plans were created for 4, 3, 2 and 1 mm setup and 3% range uncertainty and for 3 mm setup and 3%, 2% and 1% range uncertainty. Systematic and random error distributions were determined for setup and range uncertainties based on our quality assurance program. From these, 25 treatment scenarios were sampled for each plan, each consisting of a systematic setup and range error and daily random setup errors. Fraction doses were calculated on the weekly verification CT closest to the date of treatment as this was considered representative of the daily patient anatomy. RESULTS: Plans with a 2 mm/3% setup/range uncertainty setting adequately covered the primary and prophylactic CTV (V95 ≥ 99% in 98.8% and 90.8% of the treatment scenarios respectively). The average organ-at-risk dose decreased with 1.1 GyRBE/mm setup uncertainty reduction and 0.5 GyRBE/1% range uncertainty reduction. Normal tissue complication probabilities decreased by 2.0%/mm setup uncertainty reduction and by 0.9%/1% range uncertainty reduction. CONCLUSION: The results of this study indicate that margin reduction below 3 mm/3% is possible but requires a larger cohort to substantiate clinical introduction.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Feasibility Studies , Head and Neck Neoplasms/radiotherapy , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uncertainty
19.
Oral Oncol ; 112: 105083, 2021 01.
Article in English | MEDLINE | ID: mdl-33189001

ABSTRACT

PURPOSE: To externally validate the previously published pre-treatment prediction models for lymph nodes failure after definitive radiotherapy in head and neck squamous cell carcinoma (HNSCC) patients. MATERIALS AND METHODS: This external validation cohort consisted of 143 node positive HNSCC patients treated between July 2007 and June 2016 by curative radiotherapy with or without either cisplatin or cetuximab. Imaging and pathology reports during follow-up were analyzed to indicate persisting or recurring nodes. The previously established clinical, radiomic and combined models were validated on this cohort by assessing the concordance index (c-index) and model calibration. RESULTS: Overall 113 patients with 374 pLNs were suitable for final analysis. There were 20 (5.3%) nodal failures from 15 patients after a median follow-up of 36.1 months. Baseline characteristics and radiomic features were comparable to the training cohort. Both the radiomic model (Least-axis-length of lymph node (LALLN) and correlation of gray level co-occurrence matrix (Corre-GLCM)) and the combined model (T stage, gender, WHO performance score, LALLN and Corre-GLCM) showed good agreement between predicted and observed nodal control probabilities. The radiomic (c-index: 0.71; 95% confidence interval (CI): 0.59-0.84) and combined (c-index: 0.71; 95% CI: 0.59-0.82) models performed better than the clinical model (c-index: 0.57; 95% CI: 0.47-0.68) on this cohort, with a significant difference between the combined and clinical models (z-score test: p = 0.005). CONCLUSION: The combined model including clinical and radiomic features was externally validated and proved useful to predict nodal failures and could be helpful to guide treatment choices before and after curative radiation treatment for node positive HNSCC patients.


Subject(s)
Lymph Nodes/pathology , Lymph Nodes/radiation effects , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Aged , Antineoplastic Agents, Immunological/therapeutic use , Cetuximab/therapeutic use , Cisplatin/therapeutic use , Cohort Studies , Confidence Intervals , Female , Humans , Laryngeal Neoplasms/diagnostic imaging , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/radiotherapy , Lymph Nodes/diagnostic imaging , Male , Middle Aged , Models, Biological , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/pathology , Mouth Neoplasms/radiotherapy , Pharyngeal Neoplasms/diagnostic imaging , Pharyngeal Neoplasms/pathology , Pharyngeal Neoplasms/radiotherapy , Radiation-Sensitizing Agents/therapeutic use , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Treatment Failure
20.
Acta Oncol ; 60(3): 277-284, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33151766

ABSTRACT

BACKGROUND AND PURPOSE: When treating patients for esophageal cancer (EC) with photon or proton radiotherapy (RT), breathing motion of the target and neighboring organs may result in deviations from the planned dose distribution. The aim of this study was to evaluate the magnitude and dosimetric impact of breathing motion. Results were based on comparing weekly 4D computed tomography (4D CT) scans with the planning CT, using the diaphragm as an anatomical landmark for EC. MATERIAL AND METHODS: A total of 20 EC patients were included in this study. Diaphragm breathing amplitudes and off-sets (changes in position with respect to the planning CT) were determined from delineated left diaphragm structures in weekly 4D CT-scans. The potential dosimetric impact of respiratory motion was shown in several example patients for photon and proton radiotherapy. RESULTS: Variation in diaphragm amplitudes were relatively small and ranged from 0 to 0.8 cm. However, the measured off-sets were larger, ranging from -2.1 to 1.9 cm. Of the 70 repeat CT-scans, the off-set exceeded the ITV-PTV margin of 0.8 cm during expiration in 4 CT-scans (5.7%) and during inspiration in 13 CT-scans (18.6%). The dosimetric validation revealed under- and overdosages in the VMAT and IMPT plans. CONCLUSIONS: Despite relatively constant breathing amplitudes, the variation in the diaphragm position (off-set), and consequently tumor position, was clinically relevant. These motion effects may result in either treatments that miss the target volume, or dose deviations in the form of highly localized over- or underdosed regions.


Subject(s)
Esophageal Neoplasms , Lung Neoplasms , Radiotherapy, Image-Guided , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Four-Dimensional Computed Tomography , Humans , Motion , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...